Большой адронный коллайдер: зачем он вообще? Зачем адронный коллайдер? Что такое коллайдер и чем он опасен

Самый мощный в мире ускоритель заряженных частиц на встречных пучках

Самый мощный в мире ускоритель заряженных частиц на встречных пучках, построенный Европейским центром по ядерным исследованиям (CERN) в подземном тоннеле протяженностью 27 километров на глубине 50-175 метров на границе Швейцарии и Франции. БАК был запущен осенью 2008 года, однако из-за аварии эксперименты на нем начались только в ноябре 2009 года, а на проектную мощность он вышел в марте 2010 года. Запуск коллайдера привлек внимание не только физиков, но и простых обывателей, поскольку в СМИ высказывались опасения по поводу того, что эксперименты на коллайдере могут привести к концу света. В июле 2012 года было объявлено об обнаружении при помощи БАК частицы, которая с высокой вероятностью представляла собой бозон Хиггса - его существование подтверждало правильность Стандартной модели строения вещества.

Предыстория

Впервые ускорители частиц стали использоваться в науке в конце 20-х годов XX века для исследования свойств материи. Первый кольцевой ускоритель, циклотрон, был создан в 1931 году американским физиком Эрнестом Лоуренсом (Ernest Lawrence). В 1932 году англичанин Джон Кокрофт (John Cockcroft) и ирландец Эрнест Уолтон (Ernest Walton) при помощи умножителя напряжения и первого в мире ускорителя протонов сумели впервые осуществить искусственное расщепление ядра атома: при бомбардировке лития протонами был получен гелий. Ускорители частиц работают за счет электрических полей, которые используются для ускорения (во многих случаях до скоростей, приближенных к скорости света) и удержания на заданной траектории заряженных частиц (например, электронов, протонов или более тяжелых ионов). Простейший бытовой пример ускорителей - это телевизоры с электронной лучевой трубкой , , , , .

Ускорители используются для разнообразных экспериментов, в том числе для получения сверхтяжелых элементов . Для исследования элементарных частиц также используются коллайдеры (от collide - "столкновение") - ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. Ученые придают пучкам большие кинетические энергии. При столкновениях могут образоваться новые, ранее неизвестные частицы. Специальные детекторы призваны уловить их появление . На начало 1990-х годов наиболее мощные коллайдеры действовали в США и Швейцарии . В 1987 году в США недалеко от Чикаго был запущен коллайдер Тэватрон (Tevatron) с максимальной энергией пучка 980 гигаэлектронвольт (ГэВ). Он представляет собой подземное кольцо длиной 6,3 километра , , . В 1989 году в Швейцарии под эгидой Европейского центра по ядерным исследованиям (CERN) был введен в эксплуатацию Большой электрон-позитронный коллайдер (LEP). Для него на глубине 50-175 метров в долине Женевского озера был построен кольцевой тоннель длинной 26,7 километра, в 2000 году на нем удалось добиться энергии пучка в 209 ГэВ , , , .

В СССР в 1980-е годы был создан проект Ускорительно-накопительного комплекса (УНК) - сверхпроводящего протон-протонного коллайдера в Институте физики высоких энергий (ИФВЭ) в Протвино. Он превосходил бы по большинству параметров LEP и Тэватрон и должен был позволить разгонять пучки элементарных частиц с энергией 3 тераэлектронвольта (ТэВ). Его основное кольцо длиной 21 километр был построено под землей в 1994 году, однако из-за нехватки средств проект в 1998 году был заморожен, построенный в Протвино тоннель - законсервирован (были достроены только элементы разгонного комплекса), а главный инженер проекта Геннадий Дуров уехал на работу в США , , , , , , , . По мнению некоторых российских ученых, если бы УНК был достроен и введен в строй, не было бы необходимости в создании более мощных коллайдеров , , : высказывалось предположение, что для получения новых данных о физических основах мироустройства достаточно было преодолеть на ускорителях порог энергии в 1 ТэВ , . Заместитель директора НИИ ядерной физики МГУ и координатор участия российских институтов в проекте создания Большого адронного коллайдера Виктор Саврин, вспоминая об УНК, утверждал: "Ну три тераэлектронвольта или семь. А там три тераэлектронвольта можно было довести до пяти потом" . Впрочем, США тоже отказались от строительства собственного Сверхпроводимого суперколлайдера (SSC) в 1993 году, причем по финансовым соображениям , , .

Вместо строительства собственных коллайдеров физики разных стран решили объединиться в рамках международного проекта, идея создания которого зародилась еще в 1980-х годах , . После окончания экспериментов на швейцарском LEP его оборудование было демонтировано, и на его месте начато строительство Большого адронного коллайдера (БАК, Large Hadron Collider, LHC) - самого мощного в мире кольцевого ускорителя заряженных частиц на встречных пучках, на котором будут сталкиваться пучки протонов с энергиями столкновения до 14 ТэВ и ионы свинца с энергиями столкновения до 1150 ТэВ , , , , , .

Цели эксперимента

Основной целью строительства БАК было уточнение или опровержение Стандартной модели - теоретической конструкции в физике, описывающей элементарные частицы и три из четырех фундаментальных взаимодействия: сильное, слабое и электромагнитное, за исключением гравитационного , . Формирование Стандартной модели было завершено в 1960-1970-х годах, и все сделанные с тех пор открытия, по мнению ученых, описывались естественными расширениями этой теории , . При этом Стандартная модель объясняла, каким образом взаимодействуют элементарные частицы, но не отвечала на вопрос, почему именно так, а не иначе .

Ученые отмечали, что если бы на БАК не удалось добиться открытия бозона Хиггса (в прессе его иногда называли "частицей бога" , , ) - это поставило бы под вопрос всю Стандартную модель, что потребовало бы полного пересмотра существующих представлений об элементарных частицах , , , , . В то же время в случае подтверждения Стандартной модели некоторые области физики требовали дальнейшей экспериментальной проверки: в частности, нужно было доказать существование "гравитонов" - гипотетических частиц, отвечавших за гравитацию , , .

Технические особенности

БАК располагается в тоннеле, построенном для LEP. Большая его часть лежит под территорией Франции . Тоннель содержит две трубы, которые почти на всей своей протяженности идут параллельно и пересекаются в местах расположения детекторов, в которых будут осуществляться столкновения адронов - частиц, состоящих из кварков (для столкновений будут использоваться ионы свинца и протоны). Разгоняться протоны начинают не в самом БАК, а во вспомогательных ускорителях. Пучки протонов "стартуют" в линейном ускорителе LINAC2, затем в ускорителе PS, после чего они попадают в кольцо супер протонного синхротрона (SPS) длинной 6,9 километра и уже после этого оказываются в одной из труб БАК, где еще в течение 20 минут им будет придана энергия до 7 ТэВ. Эксперименты с ионами свинца будут начинаться в линейном ускорителе LINAC3. Пучки удерживаются на траектории 1600 сверхпроводящими магнитами, многие из которых весят до 27 тонн. Эти магниты охлаждаются жидким гелием до сверхнизкой температуры: 1,9 градуса выше абсолютного нуля, холоднее открытого космоса , , , , , , , .

На скорости в 99,9999991 процента скорости света, совершая более 11 тысяч кругов по кольцу коллайдера в секунду, протоны будут сталкиваться в одном из четырех детекторов - наиболее сложных систем БАК , , , , , . Детектор ATLAS предназначен для поиска новых неизвестных частиц, которые могут подсказать ученым пути поиска "новой физики", отличной от Стандартной модели. Детектор CMS предназначен для получения бозона Хиггса и исследования темной материи. Детектор ALICE предназначен для исследований материи после Большого Взрыва и поиска кварк-глюонной плазмы, а детектор LHCb будет исследовать причину превалирования материи над антиматерией и исследовать физику b-кварков , . В будущем планируется ввести в строй еще три детектора: TOTEM, LHCf и MoEDAL , .

Для обработки результатов экспериментов на БАК будет использоваться выделенная распределенная компьютерная сеть GRID, способная передавать до 10 гигабит информации в секунду в 11 вычислительных центров по всему миру. Каждый год с детекторов будет считываться более 15 петабайт (15 тысяч терабайт) информации: суммарный поток данных четырех экспериментов может достигать 700 мегабайт в секунду , , , , . В сентябре 2008 года хакерам удалось взломать веб-страницу CERN и, по их заявлениям, получить доступ к управлению коллайдером. Однако сотрудники CERN объяснили, что система управления БАК изолирована от интернета . В октябре 2009 года по подозрению в сотрудничестве с террористами был арестован Адлен Ишор , который был одним из ученых работавших над экспериментом LHCb на БАК. Впрочем, как сообщило руководство CERN, Ишор не имел доступа к подземным помещениям коллайдера и не занимался ничем, что могло было заинтересовать террористов , . В мае 2012 года Ишор был осужден на пять лет тюрьмы .

Стоимость и история строительства

В 1995 году стоимость создания БАК оценивалась в 2,6 миллиарда швейцарских франков без учета стоимости проведения экспериментов . Планировалось, что эксперименты должны будут начаться через 10 лет - в 2005 году . В 2001 году бюджет CERN был сокращен, а к стоимости строительства было добавлено 480 миллионов франков (общая стоимость проекта к тому времени составляла около 3 миллиардов франков), и это привело к тому, что пуск коллайдера был отложен до 2007 года . В 2005 году при строительстве БАК погиб инженер: причиной трагедии стало падение груза с крана .

Запуск БАК переносился не только из-за проблем с финансированием. В 2007 году выяснилось, что поставленные Fermilab детали для сверхпроводящих магнитов не удовлетворяли конструкционным требованиям, из-за чего запуск коллайдера был перенесен на год .

10 сентября 2008 года в БАК был запущен первый пучок протонов . Планировалось, что через несколько месяцев на коллайдере будут осуществлены первые столкновения , однако 19 сентября из-за дефектного соединения двух сверхпроводящих магнитов на БАК произошла авария: магниты были выведены из строя, в тоннель вылилось более 6 тонн жидкого гелия, в трубах ускорителя был нарушен вакуум. Коллайдер пришлось закрыть на ремонт. Несмотря на аварию 21 сентября 2008 года состоялась торжественная церемония введения БАК в строй. Первоначально опыты собирались возобновить уже в декабре 2008 года, однако затем дата повторного запуска была перенесена на сентябрь, а после - на середину ноября 2009 года, при этом первые столкновения планировалось провести лишь в 2010 году , , , . Первые после аварии тестовые запуски пучков ионов свинца и протонов по части кольца БАК были произведены 23 октября 2009 года , . 23 ноября в детекторе ATLAS были произведены первые столкновения пучков , а 31 марта 2010 года коллайдер заработал на полную мощность: в тот день было зарегистрировано столкновение пучков протонов на рекордной энергии в 7 ТэВ . В апреле 2012 года была зафиксирована еще большая энергия столкновений протонов - 8 ТэВ .

В 2009 году стоимость БАК оценивалась от 3,2 до 6,4 миллиарда евро, что делало его самым дорогим научным экспериментом в истории человечества .

Международное сотрудничество

Отмечалось, что проект масштаба БАК не под силу создать одной стране . Он создавался усилиями не только 20 государств-участников CERN: в его разработке принимали участие более 10 тысяч ученых из более чем ста стран земного шара , , . С 2009 года проектом БАК руководит генеральный директор CERN Рольф-Дитер Хойер (Rolf-Dieter Heuer) . В создании БАК принимает участие и Россия как член-наблюдатель CERN : в 2008 году на Большом адронном коллайдере работало около 700 российских ученых, в их числе были сотрудники ИФВЭ , .

Между тем, ученые одной из европейских стран едва не лишились возможности принять участие в экспериментах на БАК. В мае 2009 года министр науки Австрии Йоханнес Хан (Johannes Hahn) заявил о выходе страны из CERN с 2010 года, объяснив это тем, что членство в CERN и участие в программе создания БАК слишком затратно и не приносит ощутимой отдачи науке и университетам Австрии. Речь шла о возможной ежегодной экономии примерно 20 миллионов евро, составлявших 2,2 процента бюджета CERN и около 70 процентов средств, выделяемых на австрийским правительством на участие в международных исследовательских организациях. Окончательное решение о выходе Австрия пообещала принять осенью 2009 года . Впрочем, впоследствии австрийский канцлер Вернер Файман (Werner Faymann) заявил, что его страна не собирается уходить из проекта и CERN .

Слухи об опасности

В прессе циркулировали слухи о том, что БАК представляет опасность для человечества, поскольку его запуск может привести к концу света. Поводом стали заявления ученых о том, что в результате столкновений в коллайдере могут образоваться микроскопические черные дыры: сразу появились мнения о том, что в них может "засосать" всю Землю, и потому БАК является настоящим "ящиком Пандоры" , , , , . Также высказывались мнения о том, что обнаружение бозона Хиггса приведет к бесконтрольному росту массы во Вселенной, а эксперименты по поиску "темной материи" могут привести к появлению "страпелек" (strangelets, перевод термина на русский язык принадлежит астроному Сергею Попову ) - "странной материи", которая при соприкосновении с обычной материей может превратить ее в "страпельку". При этом приводилось сравнение с романом Курта Воннегута (Kurt Vonnegut) "Колыбель для кошки", где вымышленный материал "лед-девять" уничтожил жизнь на планете , . Некоторые издания, ссылаясь на мнения отдельных ученых, заявляли также о том, что эксперименты на БАК могут привести к появлениям "чревоточин" (wormholes) во времени, через которые в наш мир из будущего могут перенестись частицы или даже живые существа , . Впрочем, оказалось, что слова ученых были искажены и неверно интерпретированы журналистами: изначально речь шла "о микроскопических машинах времени, при помощи которых путешествовать в прошлое смогут только отдельные элементарные частицы" , .

Ученые неоднократно заявляли о том, что вероятность подобных событий ничтожно мала. Была даже собрана специальная Группа оценки безопасности БАК, которая провела анализ и выступила с отчетом о вероятности катастроф, к которым могут привести эксперименты на БАК. Как сообщили ученые, столкновения протонов на БАК будут не опаснее, чем столкновения космических лучей со скафандрами космонавтов: они имеют иногда даже большую энергию, чем та, что может быть достигнута в БАК. А что касается гипотетических черных дыр, то они "рассосутся", не долетев даже до стенок коллайдера , , , , , .

Впрочем, слухи о возможных катастрофах все равно держали общественность в напряжении. На создателей коллайдера даже подавали в суд: самые известные иски принадлежали американскому юристу и врачу Вальтеру Вагнеру (Walter Wagner) и профессору химии из Германии Отто Ресслеру (Otto Rossler). Они обвиняли CERN в том, что своим экспериментом организация подвергают опасности человечество и нарушают гарантированное Конвенцией по правам человека "право на жизнь", однако иски были отклонены , , , , . Пресса сообщала, что из-за слухов о скором конце света после запуска БАК в Индии покончила с собой 16-летняя девушка .

В русской блогосфере появился мем "скорее бы коллайдер", который можно перевести как "скорее бы конец света, невозможно больше смотреть на это безобразие" . Популярностью пользовался анекдот "У физиков есть традиция - один раз в 14 миллиардов лет собираться и запускать коллайдер" .

Научные результаты

Первые данные экспериментов на БАК были опубликованы в декабре 2009 года . 13 декабря 2011 года специалисты CERN заявили, что в результате исследований на БАК им удалось сузить границы вероятной массы бозона Хиггса до 115,5-127 ГэВ и обнаружить признаки существования искомой частицы с массой около 126 ГэВ , . В том же месяце было впервые объявлено об открытии в ходе экспериментов на БАК новой частицы, не являвшейся бозоном Хиггса и получившей название χb (3P) , .

4 июля 2012 года руководство CERN официально заявило об обнаружении с вероятностью 99,99995 процента новой частицы в области масс около 126 ГэВ, которая, по предположениям ученых, скорее всего и была бозоном Хиггса. Этот результат руководитель одной из двух научных коллабораций, работавших на БАК, Джо Инкандела (Joe Incandela) назвал "одним из величайших наблюдений в этой области науки за последние 30-40 лет", а сам Питер Хиггс объявил обнаружение частицы "концом целой эры в физике" , , .

Будущие проекты

В 2013 году CERN планирует модернизировать БАК, установив на него более мощные детекторы и увеличив общую мощность коллайдера. Проект модернизации называют Супер большим адронным коллайдером (Super Large Hadron Collider, SLHC) . Также планируется строительство Международного линейного коллайдера (International Linear Collider, ILC). Его труба будет длиной в несколько десятков километров, и он должен быть дешевле БАК за счет того, что в его конструкции не требуется применять дорогостоящие сверхпроводящие магниты. Строить ILC, возможно, будут в Дубне , , .

Также некоторые специалисты CERN и ученые США и Японии предлагали после окончания работы БАК начать работу над новым Очень большим адронным коллайдером (Very Large Hadron Collider, VLHC) , .

Использованные материалы

Chris Wickham, Robert Evans . "It"s a boson:" Higgs quest bears new particle. - Reuters , 05.07.2012

Lucy Christie, Marie Noelle Blessig . Physique: decouverte de la "particule de Dieu"? - Agence France-Presse , 04.07.2012

Dennis Overbye . Physicists Find Elusive Particle Seen as Key to Universe. - The New York Times , 04.07.2012

Adlene Hicheur condamne a cinq ans de prison, dont un avec sursis. - L"Express , 04.05.2012

Particle collider escalates quest to explore universe. - Agence France-Presse , 06.04.2012

Jonathan Amos . LHC reports discovery of its first new particle. - BBC News , 22.12.2011

Леонид Попов . На БАК поймана первая новая частица. - Membrana , 22.12.2011

Stephen Shankland . CERN physicists find hint of Higgs boson. - CNET , 13.12.2011

Paul Rincon . LHC: Higgs boson "may have been glimpsed". - BBC News , 13.12.2011

Yes, we did it! - CERN Bulletin , 31.03.2010

Richard Webb . Physicists race to publish first results from LHC. - New Scientist , 21.12.2009

Press Release . Two circulating beams bring first collisions in the LHC. - CERN (cern.ch) , 23.11.2009

Particles are back in the LHC! - CERN (cern.ch) , 26.10.2009

First lead ions in LHC. - LHC Injection Tests (lhc-injection-test.web.cern.ch) , 26.10.2009

Charles Bremner, Adam Sage . Hadron Collider physicist Adlene Hicheur charged with terrorism. - The Times , 13.10.2009

Dennis Overbye . French Investigate Scientist in Formal Terrorism Inquiry. - The New York Times , 13.10.2009

What"s left of the Superconducting Super Collider? - The Physics Today , 06.10.2009

LHC to run at 3.5 TeV for early part of 2009-2010 run rising later. - CERN (cern.ch) , 06.08.2009

LHC Experiments Committee. - CERN (cern.ch) , 30.06.2009

Специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком.

Большой адронный коллайдер (Large Hadron Collider, LHC) — ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов).

На Большом адронном коллайдере открыта новая частица, заявили физики Специалисты Европейского центра ядерных исследований, работающие на Большом адронном коллайдере, объявили об открытии пентакварка - частицы, предсказанной российскими учеными.

Находится на территории Франции и Швейцарии и принадлежит Европейскому совету по ядерным исследованиям (Conseil Europeen pour la Recherche Nucleaire, CERN, ЦЕРН).

На тот момент ученым не было в точности ясно, насколько открытая ими частица соответствует предсказаниям Стандартной модели. К марту 2013 года физики получили достаточно данных о частице, чтобы официально объявить, что это бозон Хиггса.

8 октября 2013 года британскому физику Питеру Хиггсу и бельгийцу Франсуа Энглеру, открывшему механизм нарушения электрослабой симметрии (благодаря этому нарушению элементарные частицы могут иметь массу), была присуждена Нобелевская премия по физике за "теоретическое открытие механизма, который обеспечил понимание происхождения масс элементарных частиц".

В декабре 2013 года, благодаря анализу данных с помощью нейронных сетей, физики ЦЕРНа впервые следы распада бозона Хиггса на фермионы — тау-лептоны и пары b-кварк и b-антикварк.

В июне 2014 года ученые, работающие на детекторе ATLAS, после обработки всей накопленной статистики, уточнили результаты измерения массы хиггсовского бозона. По их данным масса бозона Хиггса равна 125,36 ± 0,41 гигаэлектронвольт. Это практически совпадает — как по значению, так и по точности — с результатом ученых, работающих на детекторе CMS.

В февральской 2015 года публикации в журнале Physical Review Letters физики заявили, что возможной причиной практически полного отсутствия антиматерии во Вселенной и преобладания обычной видимой материи могли послужить движения поля Хиггса - особой структуры, где "живут" бозоны Хиггса. Российско-американский физик Александр Кусенко из университета Калифорнии в Лос-Анджелесе (США) и его коллеги полагают, что им удалось найти ответ на эту вселенскую загадку в тех данных, которые были Большим адронным коллайдером во время первого этапа его работы, когда был обнаружен бозон Хиггса, знаменитая "частица бога".

14 июля 2015 года стало известно, что специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком. Изучение свойств пентакварков позволит лучше понять, как устроена обычная материя. Возможность существования пентакварков сотрудники Петербургского института ядерной физики имени Константинова Дмитрий Дьяконов, Максим Поляков и Виктор Петров.

Данные, собранные БАК на первом этапе работы, позволили физикам из коллаборации LHCb, занимающейся поиском экзотических частиц на одноименном детекторе, "поймать" сразу несколько частиц из пяти кварков, получивших временные имена Pc(4450)+ и Pc(4380)+. Они обладают очень большой массой - около 4,4-4,5 тысячи мегаэлектронвольт, что примерно в четыре-пять раз больше, чем аналогичный показатель для протонов и нейтронов, а также достаточно необычным спином. По своей природе они представляют собой четыре "нормальных" кварка, склеенных с одним антикварком.

Статистическая достоверность открытия девять сигма, что эквивалентно одной случайной ошибке или сбою в работе детектора в одном случае на четыре миллиона миллиардов (10 в 18 степени) попыток.

Одной из целей второго запуска БАК станет поиск темной материи. Предполагается, что обнаружение такой материи поможет решить проблемы скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Материал подготовлен на основе информации РИА Новости и открытых источников

Немного фактов о Большом адронном коллайдере, как и для чего он создан, какой с него прок и какие потенциальные опасности для человечества он таит.

1. Строительство БАК’а, или Большого адронного коллайдера, задумали еще в 1984 году, а начали только в 2001. Спустя 5 лет, в 2006 году, благодаря усилиям более чем 10-ти тысяч инженеров и ученых из разных государств, строительство Большого адронного коллайдера было завершено.

2. БАК — это самая большая экспериментальная установка в мире.

3. Так почему же Большой адронный коллайдер?
Большим его назвали благодаря его солидным размерам: длина основного кольца, по которому гоняют частицы, составляет порядка 27 км.
Адронным — так как установка ускоряет адроны (частицы, которые состоят из кварков).
Коллайдером — из-за ускоряющихся в противоположном направлении пучков частиц, которые сталкиваются друг с другом в специальных точках.

4. Для чего нужен Большой адронный коллайдер? БАК представляет из себя суперсовременный исследовательский центр, где ученые проводят опыты с атомами, сталкивая между собой на огромной скорости ионы и протоны. Ученые надеются с помощью исследований приоткрыть завесу над тайнами появления Вселенной.

5. Проект обошелся научному сообществу в астрономическую сумму — 6 млрд. долларов. Кстати, Россия делегировала на БАК 700 специалистов, которые работают и по сей день. Заказы для БАК принесли российским предприятиям порядка 120 млн долларов.

6. Без сомнений, главное открытие, сделанное в БАК — открытие в 2012 г. бозона Хиггса, или как его еще называют «частицы Бога». Бозон Хигса — это последнее звено в Стандартной модели. Еще одно значительное событие в Бак’е — достижение рекордного значения энергии столкновений в 2,36 тераэлектронвольта.

7. Некоторые ученые, в том числе и в России, считают, что благодаря масштабным экспериментам в ЦЕРН’е (Европейской организации по ядерным исследованиям, где, собственно, и расположен коллайдер), ученым удастся построить первую в мире машину времени. Однако большинство ученых не разделяют оптимизма коллег.

8. Главные опасения человечества по поводу самого мощного на планете ускорителя основаны на опасности, которая грозит человечеству, в результате образования микроскопических черных дыр, способных к захвату окружающей материи. Есть еще одна потенциальная и крайне опасная угроза — возникновения страпелек (произв. от Странная капелька), которые, гипотетически, способны при столкновении с ядром какого-либо атома, образовывать все новые страпельки, преобразуя материю всей Вселенной. Однако большинство самых авторитетных ученых заявляют, что такой исход маловероятен. Но теоретически возможен

9. В 2008 году на ЦЕРН подали в суд двое жителей штата Гавайи. Они обвинили ЦЕРН в попытке положить конец человечеству из-за халатности, требуя от ученых гарантий на безопасность.

10. Большой адронный коллайдер расположен в Швейцарии недалеко от Женевы. В ЦЕРНе функционирует музей, где посетителям наглядно объясняют о принципах работы коллайдера и для чего он был построен.

11 . Ну и напоследок немного забавный факт. Судя по запросам в Яндексе, многие люди, которые ищут информацию о Большом адронном коллайдере, не знают как правильно пишется название ускорителя. Например, пишут «аНдронный» (и не только пишут, чего стоят репортажи НТВ с их аНдронным коллайдером), порой пишут «андроидный» (Империя наносит ответный удар). В буржуйском нете тоже не отстают и вместо «hadron» вбивают в поисковик «hardon» (на православном английском hard-on — стояк). Интересен вариант написания на белорусском — «Вялікі гадронны паскаральнік», что переводится как «Большой гадронный ускоритель».

Адронный коллайдер. Фото

Узнав впервые о существовании LHC, повосхищавшись его размерами, поудивлявшись непонятности и практической бесполезности его задач, читатель, как правило, задает вопрос: а зачем вообще нужен этот LHC?

В этом вопросе есть сразу несколько аспектов. Зачем людям вообще нужны эти элементарные частицы, зачем тратить столько денег на один эксперимент, какая будет польза для науки от экспериментов на LHC? Здесь я попробую дать ответы, пусть краткие и субъективные, на эти вопросы.

Зачем обществу нужна фундаментальная наука?

Начну с аналогии. Для первобытного человека связка бананов имеет очевидную пользу - их можно съесть. Острый нож тоже полезен на практике. А вот электродрель с его точки зрения - бессмысленная вещь: ее нельзя съесть, из нее нельзя извлечь какую-либо иную непосредственную пользу. Думая исключительно об удовлетворении сиюминутных потребностей, он не сможет понять ценность этого агрегата; он просто не знает, что бывают ситуации, в которых электродрель оказывается чрезвычайно полезной.

Отношение большей части общества к фундаментальной науке - примерно такое же. Только вдобавок человек в современном обществе уже пользуется огромным количеством достижений фундаментальной науки, не задумываясь об этом.

Да, люди, конечно, признают, что высокие технологии делают жизнь комфортнее. Но при этом они неявно полагают, что технологии эти - результат чисто прикладных разработок. А вот это - большое заблуждение. Надо четко понимать, что перед практической наукой регулярно встают задачи, которые она сама решить просто не в состоянии - ни с помощью накопленного практического опыта, ни через прозрение изобретателей-рационализаторов, ни методом проб и ошибок. Зато они решаются с помощью фундаментальной науки. Скажем, те свойства вещества, которые недавно казались совершенно бесполезными, вдруг открывают возможность для создания принципиально новых устройств или материалов с неожиданными возможностями. Или же вдруг обнаруживается глубокая параллель между какими-то сложными объектами из сугубо прикладной и из фундаментальной науки, и тогда абстрактные научные результаты удается использовать на практике.

В общем, фундаментальная наука - это основа технологий в долгосрочной перспективе, технологий, понимаемых в самом широком значении. И если какие-то небольшие усовершенствования существующих технологий можно сделать, ограничиваясь сугубо прикладными исследованиями, то создать новые технологии - и с их помощью преодолевать новые проблемы, регулярно встающие перед обществом! - можно, лишь опираясь на фундаментальную науку.

Опять же, прибегая к аналогиям, можно сказать, что пытаться развивать науку, ориентируясь только на немедленную практическую пользу - это словно играть в футбол, прыгая исключительно на одной ноге. И то, и другое, в принципе, можно себе представить, но в долгосрочной перспективе эффективность от обоих занятий почти нулевая.

Почему фундаментальной наукой занимаются сами ученые?

Кстати, стоит подчеркнуть, что большинство ученых занимается наукой вовсе не потому, что это может оказаться полезно для общества. Люди занимаются наукой, потому что это жутко интересно . Даже когда просто изучаешь открытые кем-то законы или построенные кем-то теории, это уже «щекочет мозги» и приносит огромное удовольствие. А те редкие моменты, когда удается самому открыть какую-то новую грань нашего мира, доставляют очень сильные переживания.

Эти ощущения отдаленно напоминают чувства, возникающие при чтении детектива: автор построил перед тобой загадку, а ты пытаешься разгадать ее, стараясь увидеть в описываемых фактах скрытый, взаимосвязанный смысл. Но если в детективе глубина и стройность загадки ограничены фантазией автора, то фантазия природы выглядит пока неограниченной, а ее загадки - многоуровневыми. И эти загадки не придуманы кем-то искусственно, они настоящие , они вокруг нас. Вот ученым и хочется справиться хотя бы с кусочком этой вселенской головоломки, подняться еще на один уровень понимания.

Кому нужны элементарные частицы?

Хорошо, положим, фундаментальной наукой действительно стоит заниматься, раз она спустя несколько десятков лет сможет привести к конкретным практическим достижениям. Тогда давайте будем изучать фундаментальное материаловедение, будем манипулировать отдельными атомами, будем развивать новые методики диагностики веществ, поучимся рассчитывать сложные химические реакции на молекулярном уровне. Можно легко поверить в то, что спустя десятки лет всё это приведет к новым практическим приложениям.

Но трудно себе представить, какая в принципе может быть конкретная практическая польза от топ-кварков или от хиггсовского бозона. Скорее всего, вообще никакой. Тогда какой толк в развитии физики элементарных частиц?

Толк огромный, и заключается он вот в чём.

Физические явления эффективнее всего описываются на языке математики. Эту ситуацию обычно называют удивительной (знаменитое эссе Ю. Вигнера о «непостижимой эффективности математики»), но тут есть и другой, не менее сильный повод для удивления. Всё головокружительное разнообразие явлений, происходящих в нашем мире, описывается лишь очень небольшим числом математических моделей . Осознание этого поразительного, совсем не очевидного свойства нашего мира - одно из самых важных открытий в физике.

Пока знания ограничиваются лишь «повседневной» физикой, эта тенденция может оставаться незаметной, но чем глубже знакомишься с современной физикой, тем более яркой и завораживающей выглядит эта «математическая экономность» природы. Явление сверхпроводимости и хиггсовский механизм возникновения масс элементарных частиц, электроны в графене и безмассовые элементарные частицы, жидкий гелий и внутренности нейтронных звезд, теория гравитации в многомерном пространстве и сверххолодное облачко атомов - вот лишь некоторые пары разных природных явлений с удивительно схожим математическим описанием. Хотим мы или нет, но эта связь между разными физическими явлениями через математику - это тоже закон природы , и им нельзя пренебрегать! Это полезный урок для тех, кто пытается рассуждать о физических явлениях, опираясь только на их «природную сущность».

Аналогии между объектами из разных областей физики могут быть глубокими или поверхностными, точными или приблизительными. Но благодаря всей этой сети математических аналогий наука физика предстает как многогранная, но цельная дисциплина. Физика элементарных частиц - это одна из ее граней, которая через развитие математического формализма крепко связана со многими более «практическими» областями физики, да и естественных наук в целом.

Поэтому, кто знает, может быть, изучая теорию гравитации, мы в конце концов придем к пониманию турбулентности, развитие методов квантовой теории поля позволит по-иному взглянуть на генетическую эволюцию, а эксперименты по изучению устройства протона откроют нам новые возможности для создания материалов с экзотическими свойствами.

Кстати, иногда в ответ на вопрос о пользе физики элементарных частиц начинают перечислять те конкретные методики и приборы, которые явились побочным результатом изучения элементарных частиц. Их уже немало: адронная терапия раковых опухолей, позитронно-эмиссионная томография, мюонная химия, цифровые малодозные рентгеновские установки, самые разнообразные применения синхротронного излучения, плюс еще несколько методик в процессе разработки. Это всё верно, но надо понимать, что это именно побочная, а не главная польза от физики элементарных частиц.

Зачем надо изучать нестабильные частицы?

Окружающий нас мир состоит из частиц трех типов: протонов, нейтронов, электронов. Казалось бы, если мы хотим знать устройство нашего мира, давайте изучать только эти частицы. Кому интересны частицы, которые живут мгновения, а потом снова распадаются? Какое отношение эти частицы имеют к нашему микромиру?

Причин тут две.

Во-первых, многие из этих нестабильных частиц напрямую влияют на свойства и поведение наших обычных частиц - и это, кстати, одно из важных открытий в физике частиц. Оказывается, эти нестабильные частицы на самом деле присутствуют в нашем мире, но не в виде самостоятельных объектов, а в виде «некоторого» облачка, окутывающего каждую обычную частицу. И то, как обычные частицы взаимодействуют друг с другом, зависит не только от них самих, но и от окружающих их «облачков». Эти облачка порождают ядерные силы, связывающие протоны и нейтроны в ядра, они заставляют распадаться свободный нейтрон, они наделяют обычные частицы массой и другими свойствами.

Эти нестабильные частицы - невидимая, но совершенно неотъемлемая часть нашего мира, заставляющая его крутиться, работать, жить.

Вторая причина тоже вполне понятная. Если вам надо разобраться с устройством или с принципом работы какой-то очень сложной вещи, ваша задача станет намного проще, если вам разрешат как-то изменять, перестраивать эту вещь. Собственно, этим и занимаются отладчики (не важно чего: техники, программного кода и т. п.) - они смотрят, что изменится, если сделать так, повернуть эдак.

Экзотические для нашего мира элементарные частицы - это тоже как бы обычные частицы, у которых «что-то повернуто не так ». Изучая все эти частицы, сравнивая их друг с другом, можно узнать о «наших» частицах гораздо больше, чем в экспериментах только с протонами да электронами. Уж так устроена природа - свойства самых разных частиц оказываются глубоко связаны друг с другом!

Зачем нужны такие огромные ускорители?

Ускоритель - это по своей сути микроскоп, и для того, чтобы разглядеть устройство частиц на очень малых масштабах, требуется увеличивать «зоркость» микроскопа. Предельная разрешающая способность микроскопов определяется длиной волны частиц, используемых для «освещения» мишени - будь то фотоны, электроны или протоны. Согласно квантовым законам, уменьшить длину волны квантовой частицы можно путем увеличения ее энергии. Поэтому-то и строятся ускорители на максимально достижимую энергию.

В кольцевых ускорителях частицы летают по кругу и удерживаются на этой траектории магнитным полем мощных сверхпроводящих магнитов. Чем больше энергия частиц - тем большее требуется магнитное поле при постоянном радиусе или тем большим должен быть радиус при постоянном магнитном поле. Увеличивать силу магнитного поля очень трудно с физической и инженерной точки зрения, поэтому приходится увеличивать размеры ускорителя.

Впрочем, физики сейчас работают над новыми, намного более эффективными методиками ускорения элементарных частиц (см., например, новость Первое применение лазерных ускорителей будет медицинским). Если эти методы оправдают свои ожидания, то в будущем максимально достижимая энергия частиц сможет увеличиться при тех же размерах ускорителей. Однако ориентироваться тут можно лишь на срок в несколько десятков лет.

Но не стоит думать, что гигантские ускорители - это единственное орудие экспериментальной физики элементарных частиц. Есть и «второй фронт» - эксперименты с меньшей энергией, но с очень высокой чувствительностью. Тут примером могут служить так называемые b-фабрики BaBar в Стэнфорде и Belle в Японии. Это электрон-позитронные коллайдеры со скромной энергией (около 10 ГэВ), но с очень высокой светимостью . На этих коллайдерах рождаются B-мезоны, причем в таких больших количествах, что удается изучить чрезвычайно редкие их распады и заметить проявление разнообразных тонких эффектов. Эти эффекты могут быть вызваны новыми явлениями, которые изучаются (правда, с другой точки зрения) и на LHC. Поэтому такие эксперименты столь же важны, как и эксперименты на коллайдерах высоких энергий.

Зачем нужны такие дорогие эксперименты?

На самом деле, если взглянуть на ситуацию реалистично, то альтернатива LHC состояла не в том, чтобы пустить эти же деньги на какую-то «практически полезную» деятельность, а в том, чтобы провести на них еще несколько десятков экспериментов по физике элементарных частиц, но среднего масштаба.

Логика тут совершенно прозрачна. Правительства большинства стран понимают, что некоторую долю бюджета необходимо тратить на фундаментальные научные исследования - от этого зависит будущее страны. Эта доля, кстати, не такая уж и большая, порядка 2-3% (для сравнения, военные расходы составляют, как правило, десятки процентов). Расходы на фундаментальную науку выделяются, разумеется, не в ущерб другим статьям бюджета. Государства тратят деньги и на здравоохранение, и на социальные проекты, и на развитие технологий с конкретными практическими применениями, и на благотворительность, и на помощь голодающим Африки и т. д. «Научные» деньги - это отдельная строка бюджета, и эти деньги сознательно направлены на развитие науки.

Как это финансирование распределяется между разными научными дисциплинами, зависит от конкретной страны. Значительная часть уходит в биомедицинские исследования, часть - в исследования климата, в физику конденсированных сред, астрофизику и т. д. Своя доля уходит и в физику элементарных частиц.

Типичный годовой бюджет экспериментальной физики элементарных частиц, просуммированный по всем странам, - порядка нескольких миллиардов долларов (см., например, данные по США). Большинство этих денег тратится на многочисленные эксперименты небольшого масштаба, которых поставлено в последние годы порядка сотни, причем они финансируются на уровне отдельных институтов или в редких случаях - стран. Однако опыт последних десятилетий показал, что если объединить хотя бы часть денег, выделяемых на ФЭЧ во многих странах, в результате может получиться эксперимент, научная ценность которого намного превзойдет суммарную ценность множества мелких разрозненных экспериментов.

История создания ускорителя, который мы знаем сегодня как большой адронный коллайдер, начинается ещё с 2007 года. Изначально хронология ускорителей началась с циклотрона. Прибор представлял собой небольшое устройство, которое легко умещалось на столе. Затем история ускорителей стала стремительно развиваться. Появился синхрофазотрон и синхротрон.

В истории, пожалуй, самым занимательным стал период с 1956 по 1957 годы. В те времена советская наука, в частности физика, не отставала от зарубежных братьев. Используя наработанный годами опыт, советский физик по имени Владимир Векслер совершил прорыв в науке. Им был создан самый мощный по тем временам синхрофазотрон. Его рабочая мощность была равна 10 гигаэлектронвольт (10 миллиардов электронвольт). После этого открытия создавались уже серьёзные образцы ускорителей: большой электронно-позитронный коллайдер, Швейцарский ускоритель, в Германии, США. Все они имели одну общую цель — изучение фундаментальных частиц кварков.

Большой адронный коллайдер был создан в первую очередь благодаря стараниям итальянского физика. Имя ему Карло Руббиа, лауреат Нобелевской премии. Во время своей деятельности Руббиа работал директором в Европейской организации по ядерным исследованиям. Решено было построить и запустить адронный коллайдер именно на месте центра исследований.

Где адронный коллайдер?

Коллайдер размещён на границе между Швейцарией и Францией. Длина его окружности составляет 27 километров, поэтому его и называют большим. Кольцо ускорителя уходит вглубь от 50 до 175 метров. В коллайдере установлено 1232 магнита. Они являются сверхпроводящими, а значит из них можно выработать максимальное поле для разгона, так как затраты энергии в таких магнитах практически отсутствуют. Общий вес каждого магнита составляет 3,5 тонны при длине 14,3 метра.

Как и любой физический объект, большой адронный коллайдер выделяет тепло. Поэтому его необходимо постоянно остужать. Для этого поддерживается температура 1,7 К с помощью 12 миллионов литров жидкого азота. Помимо этого, для охлаждения используется (700 тысяч литров), и самое важное - используется давление, которое в десять раз ниже нормального атмосферного.

Температура 1,7 К по шкале Цельсия составляет -271 градус. Такая температура почти близка к называется минимально возможный предел, который может иметь физическое тело.

Внутренняя часть тоннеля не менее интересна. Там находятся ниобий-титановые кабели со сверхпроводящими возможностями. Их длина составляет 7600 километров. Общий вес кабелей равен 1200 тонн. Внутренность кабеля — это сплетение 6300 проволок с общим расстоянием в 1,5 миллиарда километров. Такая длина равна 10 астрономическим единицам. Например, равняется 10 таким единицам.

Если говорить о его географическом местоположении, то можно сказать, что кольца коллайдера лежат меж городов Сен-Жени и Форнее-Вольтер, расположенными на французской стороне, а также Мейрин и Вессурат - со Швейцарской стороны. Маленькое кольцо, именуемое PS, проходит вдоль границы по диаметру.

Смысл существования

Для того чтобы ответить на вопрос «для чего нужен адронный коллайдер», нужно обратиться к учёным. Многие учёные говорят, что это самое великое изобретение за весь период существования науки, и то, что без него у науки, которая известна нам сегодня, просто нет смысла. Существование и запуск большого адронного коллайдера интересны тем, что при столкновении частиц в адронном коллайдере происходит взрыв. Все мельчайшие частицы разлетаются в разные стороны. Образовываются новые частицы, которые могут объяснить существование и смысл многого.

Первое, что учёные старались найти в этих разбившихся частицах — это теоретически предсказанную физиком Питером Хиггсом элементарную частицу, названную Это потрясающая частица является носителем информации, как считается. Ещё её принято называть «частицей Бога». Открытие ее приблизило бы учёных к пониманию вселенной. Нужно отметить, что в 2012 году, 4 июля, адронный коллайдер (запуск его частично удался) помог обнаружить похожую частицу. На сегодняшний день учёные пытаются изучить её подробнее.

Долго ли...

Конечно, сразу возникает вопрос, а почему учёные так долго изучают эти частицы. Если есть прибор, то можно запускать его, и каждый раз снимать все новые и новые данные. Дело в том, что работа адронного коллайдера — это дорогостоящее удовольствие. Один запуск обходится в большую сумму. Например, годовой расход энергии равняется 800 млн. кВт/ч. Такой объем энергии расходует город, в котором проживает около 100 тыс. человек, по средним меркам. И это не считая затрат на обслуживание. Ещё одна причина - это то, что у адронного коллайдера взрыв, который происходит при сталкивании протонов, связан с получением большого объёма данных: компьютеры считывают столько информации, что на обработку уходит большое количество времени. Даже несмотря на то что мощность компьютеров, которые получают информацию, велика даже по сегодняшним меркам.

Следующая причина — это не менее известная Учёные, работающие с коллайдером в этом направлении, уверены, что видимый спектр всей вселенной составляет всего 4%. Предполагается, что оставшиеся — это тёмная материя и тёмная энергия. Экспериментально пытаются доказать то, что эта теория верна.

Адронный коллайдер: за или против

Выдвинутая теория о тёмной материи поставила под сомнение безопасность существования адронного коллайдера. Возник вопрос: "Адронный коллайдер: за или против?" Он волновал многих учёных. Все великие умы мира разделились на две категории. «Противники» выдвинули интересную теорию о том, что если такая материя существует, то у неё должна быть противоположная ей частица. И при столкновении частиц в ускорителе возникает тёмная часть. Существовал риск того, что тёмная часть и часть, которую мы видим, столкнутся. Тогда это могло бы привести к гибели всей вселенной. Однако после первого запуска адронного коллайдера эта теория была частично разбита.

Далее по значимости идёт взрыв вселенной, вернее сказать - рождение. Считается, что при столкновении можно пронаблюдать то, как вселенная вела себя в первые секунды существования. То, как она выглядела после происхождения Большого взрыва. Считается, что процесс столкновения частиц очень схож с тем, который был в самом начале зарождения вселенной.

Ещё не менее фантастичная идея, которую проверяют учёные - это экзотические модели. Это кажется невероятным, но есть теория, которая предполагает, что существуют иные измерения и вселенные с похожими на нас людьми. И как ни странно, ускоритель и здесь сможет помочь.

Проще говоря, цель существования ускорителя в том, чтобы понять, что такое вселенная, как она была создана, доказать или опровергнуть все существующие теории о частицах и связанных с ними явлениях. Конечно, на это потребуются годы, но с каждым запуском появляются новые открытия, которые переворачивают мир науки.

Факты об ускорителе

Всем известно, что ускоритель разгоняет частицы до 99% скорости света, но не многие знают, что процент равен 99,9999991% от скорости света. Это потрясающая цифра имеет смысл благодаря идеальной конструкции и мощным магнитам ускорения. Также нужно отметить некоторые менее известные факты.

Приблизительно 100 млн. потоков с данными, которые приходят от каждого из двух основных детекторов, могут в считаные секунды заполнить больше 100 тысяч компакт-дисков. Всего за один месяц количество дисков бы достигло такой высоты, что если их сложить в стопу, то хватило бы до Луны. Поэтому было принято решение собирать не все данные, которые приходят с детекторов, а лишь те, которые разрешит использовать система сбора данных, которая по факту выступает как фильтр для полученных данных. Было решено записывать лишь 100 событий, которые возникли в момент взрыва. Записываться эти события будут в архив вычислительного центра системы Большого адронного коллайдера, который расположен в Европейской лаборатории по физике элементарных частиц, которая по совместительству является местом расположения ускорителя. Записываться будут не те события, которые были зафиксированы, а те, которые представляют для научного сообщества наибольший интерес.

Последующая обработка

После записи сотни килобайт данных будут обрабатывать. Для этого используется более двух тысяч компьютеров, расположенных, в ЦЕРН. Задача этих компьютеров заключается в обработке первичных данных и формировании из них базы, которая будет удобна для дальнейшего анализа. Далее сформированный поток данных будет направлен на вычислительную сеть GRID. Эта интернет-сеть объединяет тысячи компьютеров, которые располагаются в разных институтах по всему миру, связывает более сотни крупных центров, которые расположены на трёх континентах. Все такие центры соединены с ЦЕРН с использованием оптоволокна - для максимальной скорости передачи данных.

Говоря о фактах, нужно упомянуть также о физических показателях строения. Туннель ускорителя находится в отклонении на 1,4% от горизонтальной плоскости. Сделано это в первую очередь для того, чтобы поместить большую часть туннеля ускорителя в монолитную скалу. Таким образом, глубина размещения на противоположных сторонах разная. Если считать со стороны озера, которое находится недалеко от Женевы, то глубина будет равна 50 метрам. Противоположная часть имеет глубину 175 метров.

Интересно то, что лунные фазы влияют на ускоритель. Казалось бы, как такой отдалённый объект может воздействовать на таком расстоянии. Однако замечено, что во время полнолуния, когда происходит прилив, земля в районе Женевы, поднимается на целых 25 сантиметров. Это влияет на длину коллайдера. Протяжённость тем самым увеличивается на 1 миллиметр, а также изменяется энергия пучка на 0,02%. Поскольку контроль энергии пучка должен проходить вплоть до 0,002%, исследователи обязаны учитывать это явление.

Также интересно то, что туннель коллайдера имеет форму восьмиугольника, а не круга, как многие представляют. Углы образуются из-за коротких секций. В них располагаются установленные детекторы, а также система, которая управляет пучком ускоряющихся частиц.

Строение

Адронный коллайдер, запуск которого связан с использованием многих деталей и волнением учёных, - удивительное устройство. Весь ускоритель состоит из двух колец. Малое кольцо называется Протонный синхротрон или, если использовать аббревиатуры — PS. Большое кольцо - Протонный суперсинхротрон, или SPS. Совместно два кольца позволяют разогнать части до 99,9 % скорости света. При этом коллайдер повышает и энергию протонов, увеличивая их суммарную энергию в 16 раз. Также он позволяет сталкивать частицы между собой примерно 30 млн. раз/с. в течение 10 часов. От 4 основных детекторов получается по большей мере 100 терабайт цифровых данных в секунду. Получение данных обусловлено отдельными факторами. Например, они могут обнаружить элементарные частицы, которые имеют отрицательный электрический заряд, а также обладают половинным спином. Поскольку эти частицы являются неустойчивыми, то прямое их обнаружение невозможно, возможно обнаружить только их энергию, которая будет вылетать под определённым углом к оси пучка. Эта стадия называется первым уровнем запуска. За этой стадией следят более чем 100 специальных плат обработки данных, в которые встроены логические схемы реализации. Эта часть работы характерна тем, что в период получения данных происходит отбор более чем 100 тысяч блоков с данными в одну секунду. Затем эти данные будут использоваться для анализа, который происходит с использованием механизма более высокого уровня.

Системы следующего уровня, наоборот, принимают информацию от всех потоков детектора. Программное обеспечение детектора работает в сети. Там оно будет использовать большое количество компьютеров для обработки последующих блоков данных, среднее время между блоками - 10 микросекунд. Программы должны будут создавать отметки частиц, соответствуя изначальным точкам. В результате получится сформированный набор данных, состоящих из импульса, энергии, траектории и других, которые возникли при одном событии.

Части ускорителя

Весь ускоритель можно поделить на 5 основных частей:

1) Ускоритель электронно-позитронного коллайдера. Деталь, представляет собой около 7 тысяч магнитов со сверхпроводящими свойствами. С помощью них происходит направление пучка по кольцевому туннелю. А также они сосредотачивают пучок в один поток, ширина которого уменьшится до ширины одного волоса.

2) Компактный мюонный соленоид. Это детектор, предназначенный для общего назначения. В таком детекторе ведутся поиски новых явлений и, например, поиск частиц Хиггса.

3) Детектор LHCb. Значение этого устройства заключается в поиске кварков и противоположных им частиц - антикварков.

4) Тороидальная установка ATLAS. Этот детектор предназначен для фиксации мюонов.

5) Alice. Этот детектор захватывает столкновения ионов свинца и протон-протонные столкновения.

Проблемы при запуске адронного коллайдера

Несмотря на то что наличие высоких технологий исключает возможность ошибок, на практике все иначе. Во время сборки ускорителя происходили задержки, а также сбои. Нужно сказать, что неожиданной такая ситуация не была. Устройство содержит столько нюансов и требует такой точности, что учёные ожидали подобных результатов. Например, одна из проблем, которая встала перед учёными во время запуска - отказ магнита, который фокусировал пучки протонов непосредственно перед их столкновением. Эта серьёзная авария была вызвана разрушением части крепления вследствие потери сверхпроводимости магнитом.

Эта проблема возникла 2007 году. Из-за неё запуск коллайдера откладывали несколько раз, и только в июне запуск состоялся, спустя почти год коллайдер все же запустился.

Последний запуск коллайдера прошёл успешно, было собрано множество терабайт данных.

Адронный коллайдер, запуск которого состоялся 5 апреля 2015 года, успешно функционирует. В течение месяца пучки будут гонять по кольцу, постепенно увеличивая мощность. Цели для исследования как таковой нет. Будет повышена энергия столкновения пучков. Значение поднимут с 7 ТэВ до 13 ТэВ. Такое увеличение позволит увидеть новые возможности при столкновении частиц.

В 2013 и 2014 гг. проходили серьёзные технические осмотры туннелей, ускорителей, детекторов и другого оборудования. В результате было 18 биполярных магнитов со сверхпроводящей функцией. Нужно отметить, что общее количество их составляет 1232 штуки. Однако оставшиеся магниты не остались без внимания. В остальных заменили системы защиты от остывания, поставили улучшенные. Также улучшена охлаждающая система магнитов. Это позволяет им оставаться при низких температурах с максимальной мощностью.

Если все пройдёт успешно, то следующий запуск ускорителя пройдёт лишь через три года. Через этот период намечены плановые работы по улучшению, техническому осмотру коллайдера.

Нужно отметить, что ремонт обходится в копейку, не учитывая стоимость. Адронный коллайдер, по состоянию на 2010 год имеет цену, равную 7,5 млрд. евро. Эта цифра выводит весь проект на первое место в списке самых дорогих проектов в истории науки.