Частотомер из автомагнитолы приемника схема. Радиоприемник - цифровой частотомер. Технические характеристики частотомера

У многих из нас валяются старые, нерабочие или просто немодные китайские автомагнитолы. Начинка у большинства простая - TA2003 + TDA2005 и иногда цифровая шкала на LC7265. В своё время, лет 10 назад это были стоящие девайсы. А сейчас знакомые автомобилисты мечтают избавится от них хотя бы за символический доллар - лишь бы такие китайские автомагнитолы не валялись в гараже.

Если вы тоже являетесь счастливым владельцем таких устройств - не спешите выкидывать их. Как минимум три полезных блока можно извлечь оттуда и дать им вторую жизнь.
Прежде всего обращает на себя внимание готовый стереоусилитель на TDA2004 - TDA2005. Питание 12 - 16В, мощность около 2 по 10Вт.

Можно задействовать этот готовый модуль в качестве УНЧ при ремонте любого телевизора, магнитофона, центра и т д. Или в мостовом включении для сабвуфера, по приведённой ниже схеме

Главное, что не надо ничего паять, кроме проводов питания, входа и выхода. Выдрали аккуратно микросхему с УНЧ из платы китайской автомагнитолы и усилитель готов.

Следующий по полезности блок из китайской автомагнитолы это готовый ФМ - приёмник на TA2003. Уверенно принимает УКВ и ФМ каналы и имеет чувствительность порядка 5мкв. Тоже можно использовать и для ремонта, и как самостоятельный девайс - радиоприёмник. Вот даташиты на эту микросхему.


Вся схема тюнера обычно находится на отдельной плате китайской автомагнитолы и ничего паять не нужно (кроме проводов). На шкив регулятора крепится ручка настройки и выводится на переднюю панель.

И ещё одна очень полезная вещь, правда установленная не во всех дешёвых китайских автомагнитолах, это цифровая шкала, или просто частотомер на АЛС-ках и LC7265. Совместно с входным делителем может брать частоты почти до 200 МГц! Схема также стандартная и особенностей не имеет.

Можно использовать по прямому назначению, как цифровую шкалу. А можно и как частотомер - только учтите, что показывать он будет частоту + или - 10.6МГц. Подключение простое и проблем не вызовет даже у начинающих. LB3500 является входным делителем на 100. То есть, в зависимости от положения переключателя АМ - ФМ, получаем два диапазона: до 2 и до 200Мгц.


P.S. В принципе, что было и сделано в эпоху перестройки диапазонов с 66-74 на 88...108 МГц, как частотомер .

В общем из простой, дешёвой китайской автомагнитолы, которую давно хотелось выкинуть
мы получили несколько полезных и интересных вещей. Если Вы можете посоветовать ещё какие-то полезности из данных девайсов - пишите в комментариях..

По материалам с интернета

Простые карманные миниатюрные УКВ-ЧМ приемники с цифровой шкалой «Маnво», «Palito», «ЕСВ» и аналогичные представляет определенный интерес, так как встроенная электронная шкала это не что иное, как частотомер с цифровой индикацией. Сделав несложную доработку из них можно получить частотомер, который на четырех декадном индикаторе индицирует сотни, десятки, единицы мегагерц и сотни килогерц.

Простые карманные миниатюрные УКВ-ЧМ приемники с цифровой шкалой «Маnво», «Palito», «ЕСВ» и аналогичные представляет определенный интерес, так как встроенная электронная шкала это не что иное, как частотомер с цифровой индикацией. Сделав несложную доработку из них можно получить частотомер, который на четырех декадном индикаторе индицирует сотни, десятки, единицы мегагерц и сотни килогерц.

Малые габариты, высокая экономичность (потребляемый ток всего несколько миллиампер) и большой диапазон рабочих частот (вплоть до 800 МГц!) делают такой измерительный прибор довольно привлекательным.

Схема радиоприемника.


В его состав входят(рис. 1):
.Плата радиоприемного устройства (РПУ) на микросхеме SC1088 (или TDA7088), УЗЧ на транзисторах и УРЧ на двух транзисторах.
.На второй плате размещены часы, элементы цифровой шкалы (частотомер) и кнопки управления.

Питающее напряжение постоянно поступает на узел часов и при выключенном приемнике на табло индицируется текущее время. При включении приемника выключателем SA1 напряжение питания поступает на приемник и шину управления частотомером. Сигнал гетеродина усиливается УРЧ, поступает на частотомер и на индикаторе индицируется частота настройки.

Приемник построен по супергетеродинной схеме (нижняя настройка) с низкой ПЧ (70 кГц), и поэтому для правильной индикации частоты настройки показания частотомера завышены на 0,1 МГц, что надо учитывать при проведении измерений. Очевидно, что если подавать на вход частотомера контролируемый сигнал, то при выполнении определенных условий будет индицироваться его частота.
Прежде всего, для этого следует на корпусе приемника установить малогабаритное высокочастотное гнездо (например, SMA), поместив его ближе к входу частотомера. Кроме того, для включения частотомера надо установить малогабаритный переключатель (на схеме он обозначен как SA2").

Переключатель ПД9-2 устанавливают (приклеивают на плату) рядом с регулятором громкости, для этого перемычки J11, J14 и конденсатор С11 (нумерация приведена в соответствии с обозначением на плате) надо установить со стороны печатных проводников. Корпус переключателя соединяют с общим проводом. Гнездо SMA устанавливают на узкой стороне рядом с ленточным жгутом J21, который идет от платы приемника к плате часов (частотомера). Центральный контакт гнезда через конденсатор емкостью 500... 1000 пФ подключается к входу частотомера или УРЧ, а корпус — к общему проводу.


Схема УРЧ показана на рис. 3.

Так как он имеет два каскада, возможны три варианта подключения:
.к входу первого каскада (точка 1),
.к входу второго (точка 2)
.или к входу частотомера (точка 3).

Понятно, что место подключения будет оказывать влияние на диапазон рабочих частот и чувствительность частотомера, но в любом случае напряжение сигнала более 1V подавать не следует. Например, при подключении измеряемого сигнала на вход первого каскада чувствительность в диапазоне частот до 100 МГц составляет менее 1 мВ. Следует отметить, что при таком подключении чувствительность является чрезмерной и приводит к тому, что частотомер будет слишком чувствителен к помехам и наводкам. Кроме того, в этом диапазоне из-за нелинейных эффектов в усилителе возможно появление искажений и частотомер может индицировать частоту гармонических составляющих сигнала. Если частотомер не реагирует на наводки, то при отсутствии сигнала на индикаторе будет индицироваться показание 000,1 МГц.
В авторском варианте для подключения была выбрана точка 3. При этом дополнительный выключатель включен между плюсом батареи питания (перемычка J23) и шиной управления частотомера (см. рис. 1).
Для этого красный (или третий сверху) провод в жгуте J21 надо отсоединить от платы приемника и присоединить к выключателю. Такое подключение позволяет включать частотомер при выключенном приемнике или отключать его при включенном приемнике. Последнее удобно еще и тем, что при приеме радиостанции частотомер можно отключить и контролировать текущее время.
Нижний предел измеряемой частоты составляет 0,5... 1 МГц, верхний предел зависит от напряжения питания и для 2,5V составляет 600 МГц, для 3V — 700 МГц, а при 4V достигает 800 МГц. Большее напряжение подавать не следует.
При выключенном приемнике ток, потребляемый частотомером (вместе с часами), зависит от измеряемой частоты и изменяется от 0,3 мА при отсутствии сигнала до 0,7 мА на частотах до 50 МГц и до 4 мА на частоте 600 МГц.

Источник: Журнал "Радио" №2 2003 год.

Изприемника "PALITO" PA-618.

Модели таких приемников содержат встроенный цифровой частотомер, который благодаря наличию системы автоматической настройки и удержания частоты гетеродина заметно улучшает работу приемника. К тому же низкая промежуточная частота приемника (70 кГц) существенно упрощает его сопряжение с частотомером, поскольку есть возможность подключить последний непосредственно к гетеродину с использованием лишь буферных усилителей.
Обычно они представляют собой два транзистора, включенных по схеме с ОЭ.



Эти усилители обеспечивают достаточную чувствительность частотомера, чтобы использовать его в качестве самостоятельного устройства. Он позволяет измерять частоту от 1 до 150 МГц с точностью до десятых долей Гц, а при достаточно высоком уровне сигнала - вплоть до 300 МГц.
Правда, точность его относительно невысока, но приемники настолько дешевы, что можно смириться и с невысокой точностью, и с не очень широким диапазоном частот, измеряемых подобным частотомером.
К тому же стоит учесть, что в радиолюбительской практике часто бывает, необходим именно этот диапазон.
Самый простой способ использования цифровой шкалы приемника в качестве самостоятельного частотомера - это отключение его от гетеродина и подключение к измеряемому сигналу.
Но на достаточно высоких частотах (примерно от 20 МГц) и достаточно большом сигнале можно использовать и другой способ. Достаточно отключить от контура гетеродина конденсатор, а к катушке гетеродина приблизить контур прибора, частоту которого необходимо измерить.
Кстати, если на корпусе приемника установить тумблер, включающий/выключающий конденсатор, и к нему припаять щуп в виде иглы, как показано на рис. 1, то впоследствии приемник можно будет, не разбирая использовать как по прямому назначению, так и в качестве частотомера.

В корпусе от маркера.

От приёмника надо отпаять всего четыре провода шлейфа и припаять к собранному усилителю ВЧ.
(детали, для которого можно взять из приёмника). R6-чтобы не мерцали показания.
Datasheet: SC3610

Емкость на входе(10пф), можно уменьшить до 1пф с целью уменьшения вносимой погрешности в случае непосредственного подключения к колебательному контуру.

Частотомер можно использовать и как часы, надо только питание подать через переключатель а для коррекции времени использовать свободные выводы см. фото

Источник информации: тема на форуме - «Переделка китайского радиоприёмника в частотомер»

1. Что такое цифровая шкала?

В современных приёмниках и тюнерах есть много дополнительных сервисных устройств, которые упрощают процесс настройки на радиостанцию. Одним из таких устройств является цифровая шкала . Это, как правило, 4-5 разрядный цифровой индикатор, на котором отображается непосредственная частота принимаемой радиостанции.

2. Как это работает?

Для этого нужно немного вспомнить теорию супергетеродинного приёма. В таком приёмнике есть входной контур с УВЧ (усилителем высокой частоты), гетеродин и смеситель (или преобразователь, что суть одно и то же). Гетеродин – это встроенный ВЧ-генератор, который вырабатывает (генерирует) напряжение высокой частоты. Частота этого напряжения может быть выше или ниже частоты принимаемого сигнала на вполне определённую величину (обычно 6,5 или 8,4 или 10,7 МГц). Т.е., например, при настройке на станцию, которая работает на частоте 100,0 МГц (при частоте ПЧ = 10,7 МГц), гетеродин будет вырабатывать сигнал частотой 89,3 МГц (если его частота ниже частоты сигнала станции) или 110,7 МГц (если выше). Второй вариант на практике используется чаще.

При перестройке по диапазону частота настройки УВЧ и гетеродина меняется одновременно. Для этого используется сдвоенный агрегат настройки (КПЕ, вариометр или варикапы). Принятый сигнал и сигнал от гетеродина подаются на смеситель, который выделяет разность этих частот. Эта частота называется промежуточной (ПЧ). Дальнейшее (основное) усиление принятого сигнала производится именно на ПЧ. Это упрощает конструкцию приёмника, так как не нужно делать перестраиваемые контуры, а основное усиление сигнала любой принятой станции производится на одной и той же частоте. Это основное преимущество супергетеродина.
Измерять непосредственно частоту принимаемого сигнала сложно, поскольку его величина очень незначительна и подвержена влиянию внешних факторов. А вот гетеродин – это «местный» генератор. Частоту и амплитуду вырабатываемого гетеродином напряжения можно стабилизировать (что и делается в хороших приёмниках), а раз они относительно стабильны, то и измерить их значительно проще. Вот именно для измерения частоты гетеродина и используется цифровая шкала .
Цифровая шкала – это, по сути, цифровой частотомер, но довольно «специфический». Например, если к гетеродину подключить «обычный» частотомер, то он нам покажет не частоту принимаемой станции, а частоту самого гетеродина. Пользоваться такой шкалой будет неудобно, так как придётся «в уме» отнимать (или прибавлять) величину ПЧ к показаниям индикатора. Что бы не обременять радиослушателя такими «математическими вычислениями», их производят непосредственно в самой цифровой шкале. В этом и заключается её «специфика».
Как это происходит? В общем-то, довольно просто – с помощью предустановки (предварительной записи) значения частоты ПЧ в микросхемы счётчика в начале каждого цикла измерения. Так, при частоте ПЧ = 10,7 МГц и при условии, что частота гетеродина выше частоты принимаемой станции, в счётчики предварительно записывается число «9893». В приведённом выше примере частота, вырабатываемая гетеродином, будет 110, 7 МГц. Подаём этот сигнал на вход счётчика (естественно, предварительно поделив её на 100 000). Он сначала отсчитает 107 импульсов (это частота ПЧ), что приведёт к «обнулению» предустановленных счетчиков и далее они начнут считать непосредственно частоту станции «как бы» с нуля. Вот и весь «фокус».
Именно на таком принципе работает ЦШ на дискретных элементах, которую я построил ещё в 90-е годы. В основе – схема ЦШ тюнера «Ласпи-005», которая была основательно переделана. Для её изготовления потребовалось 18 ИМС, в том числе 3 шт. - из серии К500 (ЭСЛ-логика), большое количество «обвязки», сложная печатная плата.


6. Немного о деталях

Для изготовления плат использовался импортный односторонний фольгированный стеклотекстолит толщиной 1,5 мм. Платы изготовлены по ЛУТ. После травления и обрезки «в размер», просверлены все отверстия, дорожки зачищены «нулёвкой», обезжирены спиртом и полностью залужены.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Шкала будет работать при подключении к этому блоку и без буферного каскада – он уже установлен в этом блоке УКВ штатно. Нужно собрать простейшую схему (Рис. 16, расположение выводов указано при виде на блок сзади), выход «OSC» блока УКВ соединить коаксиальным кабелем со входом ЦШ и подать питание. Выход «To IF AMP» («К усилителю ПЧ») можно никуда не подключать, как и вход АРУ («AFC»). Таким способом можно легко убедиться в работоспособности шкалы, перестраивая блок с помощью переменного резистора на 47 … 100 КОм от начала до конца диапазона.

В других же случаях подключение шкалы к блоку УКВ – это отдельная тема. Задача, на самом деле, непростая. Дело в том, что шкала обладает своим входным сопротивлением и входной ёмкостью. Поэтому, при подключении шкалы к гетеродину приёмника, мы внесём дополнительную ёмкость в гетеродин, изменим режим его работы и сместим диапазон («вниз»), в котором он генерирует. Что бы минимизировать это влияние (но не устранить полностью), между гетеродином и ЦШ необходимо включить буферный каскад – эмиттерный или истоковый повторитель, который обладает большим входным и малым выходным сопротивлениями и имеет маленькую входную ёмкость. В любом случае, подстраивать гетеродин придётся. Желательно разместить буферный каскад в непосредственной близости от гетеродина, на отдельной маленькой платке, а уже к ней подключить провода, идущие к ЦШ. Если приёмник разрабатывается «с нуля», то имеет смысл недалеко от гетеродина разместить и прескалер LB3500, а на ЦШ подавать уже сигнал с частотой, поделенной на «8». Именно так я поступил в самодельном ламповом блоке УКВ:

Универсальные рекомендации здесь дать сложно. Простую схеку буферного каскада можно «подсмотреть», например, в книге: Б.Ю. Семёнов «Современный тюнер своими руками», «Солон-Р», М., 2001 г, стр. 183. Это узел R5R6R7VT1C5 на полевом транзисторе КП303. Я проверял работу этого каскада с однокристальными приёмниками на микросхемах ТЕА5710 и СХА1238 . В обоих случаях всё работало прекрасно. Пришлось только немного подстроить частоту гетеродина.

К сожалению, для приёмников, у которых частота ПЧ отличается от 10,7 МГц (например, как в старых советских ламповых приёмниках с их ПЧ = 8,4 или 6,5 МГц) эта шкала не годится. Хотя в Интернете мне встречались варианты доработки шкалы на этой ИМС для приёмников с ПЧ = 500 КГц (в режиме АМ). Там автор просто подобрал кварц с другой частотой. Не знаю, насколько корректно при этом будет работать ИМС, но такой вариант существует.

--
Сергей Вицан

Читательское голосование

Статью одобрили 26 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем. Если уж браться за создание цифрового частотомера, то делать сразу универсальный измерительный прибор, способный мерять частоты не до пары десятков мегагерц (что свойственно ), а до 1000 МГц . При всём этом, схема не сложнее стандартной, с использованием pic16f84 . Отличие лишь в установке входного делителя, на специализированной микросхеме SAB6456 . Этот электронный счетчик будет полезен для измерения частоты различного беспроводных оборудования, особенно передатчиков, приемников и генераторов сигналов в диапазонах УКВ.

Технические характеристики частотомера

- Напряжение питания: 8-20 V
- Потребляемый ток: 80 мА макс. 120 мА
- Входная чувствительность: макс. 10 мВ в 70-1000 МГц диапазон
- Период измерения: 0,08 сек.
- Частота обновления информации: 49 Гц
- Диапазон: 0,0 до 999,9 МГц, разрешение 0,1 МГц.

Особенности и преимущества схемы. Быстрая работа - короткий период измерения. Высокая чувствительность входного сигнала в диапазонах СВЧ. Переключаемое промежуточное смещение частоты для использования его совместно с приемником - в качестве цифровой шкалы.

Принципиальная схема самодельного частотомера на PIC

Список деталей частотомера

R1 - 39 k
R2 - 1 k
R3-R6 - 2,2 k
R7-R14 - 220
C1-C5, C6 - 100-n mini
C2, C3, C4 - 1 n
C7 - 100 ед.
C8, C9 - 22 p
IC1 - 7805
IC2 - SAB6456 (U813BS)
IC3 - PIC16F84A
T1 - BC546B
T2-T5 - BC556B
D1, D2 - BAT41 (BAR19)
D3 - HD-M514RD (красный)
X1 - 4.000 МГц кварц


Вся необходимая информация по прошивке микроконтроллера, а также полное описание микросхемы SAB6456, находятся в архиве . Данная схема многократно испытана и рекомендована к самостоятельному повторению.

В связи с динамично обновляющимся парком автомобилей (иномарок) в нашей стране в настоящее время достать блок цифровой шкалы (ЦШ) старой автомагнитолы или тюнера для радиолюбителя не представляет особых затруднений.

Чаще всего эти ЦШ выполнялись на микросхеме фирмы Sanyo LC7265 в паре с делителем LB3500 в едином цифровом блоке, соединенном (жестко или гибким шлейфом) с индикаторным блоком, и предназначались для индикации принимаемой частоты в диапазонах АМ MW-LW (АМ на СВ-ДВ) и FM (ЧМ УКВ). Согласно стандартам промежуточных частот в LC7265 «зашиты» возможные варианты их выбора (см. табл.1, 2) путем перекоммутации выводов 11 – 15 с шагом индикации 1 (10) кГц в диапазоне АМ (0 - 1990 кГц) или 50 кГц в диапазоне FM (0 - 199,5 МГц).

В своих конструкциях радиолюбители применяют эти блоки либо по прямому назначению – как цифровая шкала, чаще ЧМ-приемника, причем в диапазонах не только FM1, 2, но и других, начиная с гражданского СВ-диапазона 27 МГц, с шагом 50 кГц.

Реже эту ЦШ применяют в качестве частотомера . Показания считываются с блока индикаторов и к ним добавляется (а в FM диапазоне может и вычитаться) выбранное значение ПЧ, что не совсем удобно. Да и шаг индикации 50 кГц, если выбрана ПЧ FM диапазона, не позволяет достаточно точно измерить частоту. На АМ диапазоне с приемлемым шагом 1 кГц верхний предел ограничен 2 МГц.

Собственно, это значит, что приступая к измерению нужно знать, в каком диапазоне (сколько МГц) находится измеряемая частота. Т.е., получается, что после первого участка диапазон до 18 мГц разбит на участки по 2 мГц (от 0 до 1999 кГц). При этом частоты участков выше 2 МГц при четных значениях (мегагерцы) будет всегда индицироваться первой цифрой индикатора - единицей.

Таким образом, алгоритм измерения частоты можно представить в два этапа:

1. Сначала на диапазоне FM определяем с точностью до +/- 50 кГц частоту исследуемого сигнала. Например, индикатор покажет 14,00 МГц. Собственно частота будет составлять 14,00 – 10,7 МГц (запрограмированная ПЧ) = 3,3 МГц.

2. Далее измерения проводим в диапазоне АМ. Индикатор покажет только последние три цифры значения измеряемой частоты в кГц + 455 кГц. Скажем, 378 (кГц). Вывод: измеренная частота равна 3,378 МГц + 455 = 3,833 МГц.

Если же на диапазоне FM первая из четырех цифра будет четной, то при уточняющих измерениях на АМ диапазоне первую цифру индикатора (единицу) следует игнорировать. Например, 15,00 (показывает индикатор) – 10,7 (вычитаем ПЧ) = 4,3 МГц (первая цифра "4" - четная). На втором этапе измерений индикатор покажет 1378. Измеренная частота будет 4,378 МГц (единица игнорирована, т.е заменена на 4) + 455 кГц.

В ЦШ из автомобильного приемника "зашита" частота 455 кГц (или другая, имеются стандартные варианты, см. табл.2). Это рассчитано на то, что в самом приемнике ПЧ = 455 кГц (или другая...), и при работе в комплексе с приемником на дисплее будут истинные показатели принимаемой приемником частоты.

Алгоритм такой: в приемнике F пч = Fсигн. - Fгпд (всегда одна и та же ПЧ = 455 кГц, т.к. перестраивается и ГПД, меняется Fсигн. Далее детектирование Fпч в звуковой спектр и УЗЧ).

В ЦШ то же самое, только частота 455 кГц ("аналог Fгпд приемника") зашита в микропроцессор ЦШ "намертво", не меняется. При этом при смене (перестройке приемника) по частоте Fсигн. дисплей будет показывать меняющуюся частоту приема по алгоритму Fдиспл. = fсигн. - Fзашит.

Если взять ЦШ отдельно (вне приемника) и подать на ее вход какую либо частоту (режим частотомера), то чтобы получить (правильно прочитать) значение измеряемой частоты, нужно прибавлять (суммировать) 455 в уме к показаниям дисплея. Ведь в ЦШ эти 455 кГц "зашиты" и они учтены в показаниях на дисплее.

Выходом из положения (чтобы не считать) может послужить применение опорного генератора (ОГ) с простейшим смесителем. В ОГ можно использовать пьезокерамический резонатор на 455 кГц (его можно найти во многих импортных «мыльницах»). Без сигнала на входе смесителя индикатор ЦШ покажет 000 кГц. При подаче измеряемого сигнала на вход смесителя будет индицироваться частота с шагом 1 кГц до верхнего предела 1999 кГц. Далее снова последуют 000 кГц, и так до 18 мГц. Это происходит потому, что счет и индикация цифр старшего разряда (мегагерцы в АМ диапазоне) в цифровой шкале выше единицы не проводится.


Таким образом, чтобы "нивелировать " эти "зашитые" в ЦШ 455 кГц можно сделать приставку, в которой в смесителе суммируется частота 455 кгц (она получается в ОГ приставки с помощью резонатора 455 кГц) с частотой измеряемого сигнала. Тогда на дисплее будут цифры, соответствующие измеряемой частоте, и суммировать в уме не требуется. Конечно, с учетом погрешности резонатора в ОГ приставки, "пролезания" его сигнала на вход ЦШ, амплитуды и вида входного сигнала и сигнала ОГ, завала частот на ВЧ, и многого возможного другого при конструировании прибора.

Ниже приводится схема ЦШ (рис.1), лишь немного отличающаяся от приведенной в .

Рис.1

Как следует из данных таблиц 1 и 2 коммутация выводов микросхемы LC7265 позволяет работать этой ЦШ с промежуточными частотами +455 кГц и -10,7 мГц.

Применяя описанную в статье методику измерений, можно, конечно, обойтись и без смесителя с ОГ, проводя два простейших арифметических действия… Часто этого бывает достаточно, и точность вполне устраивает радиолюбителя (шаг ЦШ = 1 кГц).

Более того, при проведении измерений частоты, когда точности показаний шкалы с шагом 50 кГц достаточно (например, в УКВ диапазоне с ЧМ), можно ограничиваться только первым пунктом алгоритма, снова же, не применяя относительно низкочастотную смесительную приставку. При этом верхний предел измерений теоретически может достигать 199,5 МГц.

Конечно, для измерения частоты самодельным (переделанным) прибором (менее точно, зато более удобно), можно использовать способ переделки, описанный в статье "Простой частотомер из китайского приемника"

Мы же предлагаем, используя принципы, рассмотренные в настоящей статье и применяя схемотехнику подобных преобразователей, сделать приставку. Для начала, советуем обратить внимание на эти работы:

ВЧ приставка к осциллографу

Устройство для настройки кварцевых фильтров

Источники:

1. А.Романчук. ЦШ для приемника. – Радиомир, 2002, № 6, с. 8.

2. С.Ефименко и др. Комплект микросхем для индикации частоты настройки радиоприемника. – Радиомир, 2001, № 8, с. 40.

3. http://www.datasheetpdf.com/datasheets/Sanyo/lc7265.pdf.html

PS. Статья отредактирована заново с учетом пожеланий посетителей сайта и с согласия автора статьи 27 . 01 . 2011 г.